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Negative Temperatures 
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It is shown by an example bow the mncept of nqative temperature finds . natural place in the approach 
to th<nnodynamlcs wlUch .... ori';n.ted by earatModory. 

1. IftTaODUCTIOft 

'"T'HE concept of spin temperature does not so far 
.1 eeem to have been discussed from the point of 

view of CaratModory's principle in thermodynamics. 
A brief discussion of· alternative signs for the absolute 
temperatures of equilibrium systems is, however, con­
tained in an attempt to extend the approach originated 
by CaratModory.' The purpose ·of this note is to sbow 
expIicity bow a negative temperature finds a natural 
place in this system of ideas. The results derived here 
are \.)lerefore to some extent contained in, or simple 
corollaries from, the approach developed in I . But they 
are difticult to obtain from I without working through 
the whole paper, 10 that the present exposition may be 
of use. 

Consider a spin system which is decoupled from tbe 
lattice, and whose thermodynamic equilibrium state can 

. be described by specifying the strength B of a uniform 
applied ~etic field, and the temperature T_ -li T, 
wbere Til the absolute temperature. From a statistical 
mechanical analysis, the pbase space may be taken to be 
the (S, .. ) plane. Curves of constant magnetic field bave 
then the form shown in Fig. !. These bave been drawn 
for the high-temperature approximation, when 

1I- -CBT, 

U- C(II'+lPj.., 

S - A-C(II'+lP)r'/ 2, 

(I) 

(2) 

(3) 

where A, B, and C are constants. 11 is the average value 
of the magnetic moment in tbe direction of the applied 
field, and U is the mean internal energy. B is determined 
by the interaction among the spins. The proof of Eqs. 
(1) to (3) is stzaigbtforward, the maio formulas having 
been given by Abragam and Proctor' (see Appendix 
for additional derivations). 

The above example sbows incidentally that the usual 
de6.nition of an ideal paramagnetic material by 11 
- I{Bln is too broad, since this law can also be ob­
tained for interacting spins. The following additional 
restrictions may be suitable for the ideal paramagnetic 
ma~: (i) B-O implies 11-0, and converselY i (ii) 
the Internal energy in uro field is independent.of tem-

2'!. ~, Revs. Modem Phya. 28, 363 (1956), 10 be 
,-~- 10 u I. A.-.. detailed eq>ooition is contained In • 
fby .... =,:-:.:::.~)'D&lDica which is beiD, published __ ., lac., N ... York . 

• A. A ........ ODd W. G. Proctor, Phyo. Rev . • ", 1441 (1958). 
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perature. With this definition the system speci6.ed by 
Eqs. (1) to (3) is an ideal paramagnetic system only 
iIB- O . 

2. A1fALYSlS or TJDI ~ SPACK 

The thermodynamic state of any system must be 
specified by at least two independent variables (I, 
p. 365). One may chose T and S (as above), or T and 
another variable ", say the magnetic field. If one bas 
only one independent variable, " and T cannot be inde­
pendent. The lheory of tbe thermodynamic equilibriWll 
of such systems sbould therefore be derivable from the 
theory of equilibrium with respect to the variable ". 
For instance, the condition T,-T, for thermal equi­
librium can tben be staled by using only the variable " 
(i.e., lbe magnetic field) . From this oboervation one 
obtains, as a special case, a remark by Abrapm and 
Proctor (reference 2, p. 1444), who DOte with respect to 
syslems satisfying Curie's Law that conclusions about 
lhe magnelic moment of lbe system can be derived 
"without bothering about spin temperature at all." 

There is therefore little thermodynamic inlerat in 
considering a spin system which is subject to quuistatic 
adiabatic processes only, since this bas only ODe inde­
pendent variable. It will therefore be .... umed that it is 
possible to link adiabatically the states repreleDted by 
any two points in the phase space of Fli. l--1111Je. the 
contrary can definitely be established for speci6.c points 
of this space. The concepts of I can then be applied 
and one has two independent variables in T and S 0; 
Tand B . The question as to the validity of this ~ 
lion focusses attention on the search for the irrevenibIe 
adiabatic processes which may be poesible with ipIn 
systems. (For example, the above asaumption would be 
invalid if no irreversible adiabatic processes were poesi_ . 
ble for spin systems.) 

Tiu .tll7.-Denote by 17 tbe set of points which bas 
the property that the slates represented by any two 

s<H;n 
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points of (3 can be linkt-d adiabalically, and Ihal no 
points which can be in the sel are cxdudl-d (r, p. 371). 
NOle Ihat points such as R are outside (3. For at infinite 
absolute temperature the entropy has the value II for 
~Il finite ~e1~s: R c.a n be approachl'ti indefinitely, even 
111 a .qUa. .. 'tkI1C adiabatIc manncr, by raising the field, 
but It cannot be attained with finite fields . Thus no 
point on the r=O axis can Ii in fJ, excepting the point 
for whkh S-.'I. 

The sd F((J).-This is the set of points which co nsti­
tutes the " frontier" of (3 (I, p. 376), i.e., it contains all 
boundary points of (3. F((J) consists of the curve 11- 0 
part of the axi. •• - 0, and we shall regard it as open io; 
the direction of the axis S =O, since the thl'Ory leading 
to Eqs. (1) to (3) ceases to apply in any ca..., as the low 
entropy values are approached . The purt AR of the 
r=O axis including the point S=.I, belongs to F((J). 
The asseni"n thaI a point lies in F((J) does not mean, 
of course, that the point belongs to (3. \vhi h of the 
point s of F((J) belong to (3 must be decidL-d by a separate 
argument. The criterion to be used is that, if a polnt of 
F((J) belongs to (3, then the sla le which this point repro­
scnts must be adiabatically linked with the rest of (3. If 
it does not belong 10 (3, il is not adiabatically linked 
with the rest of (3. 

Tiu set 'Y.-<>ne 'can take one further step without 
deciding which points of F((J) belong to (3. Consider the 
set of those points of F((J) which do in fact lie in (3, and 
remove them from (3. One is then left ,';th two discon­
nected sets, to be denoted by 'YI and 'YI, which lie re­
spectively to the left and to the right of the axis . - 0. 
Each set is an open set, i.e., it consists of internal points 
only, because it contains no boundary points. As in I , 
p.376, if a set 'Y is referred to in the sequel, either one of 
these open con.nected subsets of (3 is meant. Each point 
of 'Y l possesses a neighborhood, every point of which 
lies also in 'YI, and the same holds for 'YI. 

3. BnSTBJIICB OF TWO SUBSETS y : 
OBJIIBJlALIZATIOIl'S 

The fact tbat the set (3 contains two sets 'Y holds clearly 
for all systems baving a finite number of energy le~els 
[and is not a property of the specific model leading to 
Eqs. (1) to (3)].1 For such systems it is a fact of statis­
tical mechanics that the entropies at T=O and r-O are 
independent of extemal parameters. However, critical 
values of such parameters may exist for which the 
entropy jumps abruptly from onc value to another, for 
example, if a degeneracy is split by a magnetic field at 
absolute uro. It follows that on a plot such as that of 
Fig. I, the set (3 can have only isolated points [wbich 
lie in P((J) and therefore outside 'YJ on the r - O axis. In 
an analogous plot of entropy against absolute tempera­
lure, the set (3 can have only isolated points on the T - O 
axis. It follows that whtlltuT posiliu alld IItta/irt /ttI!-

'It holds aJto for an infinity of levell, Jlrovided there e:ci~t lJolh 
Ph;''~~103,~e(1'956)~ to the torrlY· ~ calM N . .... RRmaey, 

F,o. 2. Alternalive 
ro ...... r lhe phue opoce. 
" Reduced" _ta­
lion which does not di, ­
lincuiah between poeilivc 
and lative tempera­
tures. y.II'+IJ', ,_ 
(11'+ )-'J. 

~ ., ~. .. - -
o /--- flo) T' 

:~-. 
o (b) r 

peraJures ""WI bu" tkfiMti jor /J set (3, ........ refers 10 " 
sysltft! ha""1 a fi"ile IIIU11ber of tll6fY kotls, IIwl set 
lon/al1f.S (al leasl) two disClntMCkd sets 'Y. 

An even more general conclusion of this kind can be 
derived from thermodynamics. That an intqn.linI fac­
tor of d'Q is the absolute temperatun T, holds in aeaeraI 
only for a set 'Y, since no troubles can arise in these Ids 
from the existence of boundary points. In such a set it 
may be possible to approach the hypenurlace T-O and 
r=O as closely as desired (and it may alto be po.ibIe 
~o define these sets by a limi linI process, as dilCUlled 
m I , p. 379). However, they cannot be reached in 'Y, 
since the mathematical processes ... £icb enabled ODe to 
define the absolute temperature T as an intqn.tinc fact 
of d'Q, presume that T is finite and nonzero. HelICe one 
can conclude that Ihe sets 'Y ,,,,,,Il0l adwJly 11114i" or 
cross llu hyperStW/aces T=O alld r-O. 

4. THDIIODYJIIAIOC COJilSIDDATIOIIIS 

In lbe p=eding sections we have started with .tatis­
tical mechanics and hence introduced the thermody­
namic pbase space together with ita simplest topoIocicaI 
properties. It is instructive to invert this procedure. 
Given the thcnnodynamic properties of the systaD in 
the form of Eqs. (1) to (3), wbat can one say about tbe 
limitations of the treatment which pve-rise to them? 

The second law will be used in the foUowinc form: 
AU points of ., are i-points. By an O-point is meant a 
point y of ., such that every 'Y-neighborbood of it con­
lains a point which is adiabatically inaccessible from y 
[I, (DlI)]. Let tbis law be applied to F~. 2(a), UIWIl­

ing B=O. It is dear tbattbe point 0 cannot be adiabati­
cally linked with the points o( the let ~. For if it wen, 
one could pass (rom any point in ., to all nei&hhorin& 
points, by choosing paths along adiabatics at>d IIOilII 
through O. Hence the points of., would not be .-points. 
Thi argument, which applies to ideal JlIII&IIII&I1etic 
systems, shows that at low temperatures .1Id low field. 
such systems cannot exist. If B"'O it is, of coune, clear 
from Fig. 2fa) that the ys\em cannot exist at low taD-
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peratures. A similar &rJIIlMnt, applied to the origin of 
Fie. 2(b), sbo",s that tbis point is adiabatically unlinked 
with the rat of the points of'Y (whetber B-O or B,.O). 
The remonl of one point from tbe set fJ must mean that 
physically also the immediate neighborhood of this 
point does not correspond to true states of tbe system. 
The orisin of Fig. 2(b) comsponda to infinitely high 
temperatures .1Id infinitely high fields. Thus thermo­
dyDamics sugest. that the theory of Sec. I is oit.her a 
hiP-temperature Iow-6.1d theory, or eJse a low-tem­
perature bieh-field theory. The 6rst possibility is in 
fact the correct on • . 

It may be argued that at points such as 0 one has 
phyoically no means available of c:boeins one adiabatic 
rather than another on whicb to leave o. In the present 
method of presenting thermodynamics, bowever, such 
questions do not arise, since any curve which lies in a 
set fJ and conaists of adlabatics represents a quasistatic 
odiabatic Iinka&'e of two states. The possibilities of such 
Iiokap depends exclusively on the topoIocy of the 
tbermodyDamic phase ~. 

To a high-temperature theory the third law of thermo­
dynamics in its conventional form cannot be applied. 
III a more aaaeraJ formulation, the tbird law is a atate­
JDalt which uaerts which of the boundary points F(fj) 
of a set 'Y may be reprded as adlabaticaJJy linked with 
the real of 'Y, and are therefore to be reprded as also 
beIoacb'I to the set fJ. III aneraI, all boundary points 
F(y) which do not c:omspood to a atate at the absolute 
..... of temperature can be included in a set fJ. By this 
principle aD points of the curve B - 0 of Fig. 1 are to be 
repnIed as put 01 the set fJ. This applies also to the 
state of muimwn ootropy A. This conclusion is In 
acr-ot with the rault obtained from the US1IJIIption 
stated at the begiDDing of Sec. 2. 

It is oaIy for a set 'Y that the second law ..... rts the 
existeoce of an ootropy and an abaoIute temperature. 
III the pftsent example, therefore, it tella us that there 
eziat·1UI. ootropy 51 and lUI. abaoIute temperature TI for 
the set 'YI, and limiIarIy that there exist fuDctioDs 5., T. 
for 'Y~ SiDce the equatioD ~Q-T~ remains vaJid under 
the IraDlfarmatioo T -. CT, 5 -. C-"5, however, there 
is ,till __ arbit.ran- in the de6nitioDs. U one set 
'Y.- 0IIIIIidaed by Itself, for aampIe, the choice of ai&n 
II IliII available, and tbla Jives rile to various types of 
~, as conaidered in I. 

In tbe present aampIe the IigDI chooen for T and 5 
in 'YI and in 'Y. are aJoo arbitrary from the therm0-
dynamic point of view. It II only If one COIIIiden the 
relation betweeo the two lOll that..sdltiona1 ratrictions 
ean be brought into play. F« lnataDce, oae can use the 
statistical mechanical reault that for a liven 6eld one 
ean have two physically dlatiDct states of the -­
entropy. It thoo becomes wry CODvenient to cbooee 
opposite signa for the abaoIute temperatUfti in 'YI and 
'Y', and to choose the additive CODItanllm the ootropy 
in such a way that th. ootropia are poIitive in both 
'YI and 'Y •. 

ACICIOWLa)OIDIIT 

r am indebted to ~ M. r ..... for corre­
spondence. 

.u9SIIDIlt 

Using the notation of A ...... aDd PIac:t«,' the 
HamIltonian 01 the system _ W-Bo+B .. where 

Tr(B.)-Tr(BI)-Tr(BJltl-O. 

The _ intemal eDeII)' in the JUch-lemperature ~ 
. proximation is, with fJ-l/IIT, 

a -Tr(W,... .. )/Tr(~(W -fJW')/Tr/. 

The _ magnetic _t in the cIinoctioD 01 the 
6eJdis 

Il-Tr(.I(,...,...)/Tr(,... .. ~(.I( -~/Tr/. 

Since B.- -.I( B, wbeft B II the ~ 6dd, 

O'i!!-C(1P+B')/ T, IIQlCB/T, (AI) 
where 

C-Tr(J(I)/ID/, B'-Tr(B£j/Tr(J(I) . 

In the text U and .I( have been writleD for a aDd II. 
The relatioo T~-~U+.I(m --. upon using 

BandT as variables, 

tlS-CT-'(1P+B')n' -CBT-WI. 

Hence the entropy can be taken in the form 

5-A-fCT'4(1P+B'). (A2) 

This yields Ecp. (1) to (3) of tbe texL 


